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1 Introduction

According to a remarkable conjecture put forward by Alday and Maldacena [1], the p-point

gluon scattering amplitude at strong coupling in N = 4 super Yang-Mills is related to a

string worldsheet in AdS5 approaching a p-sided polygon spanned by the lightlike momenta

of the scattering process on the conformal boundary of AdS5. In ref. [1] this conjecture

has been checked for p = 4. Furthermore, taking it for granted, the breakdown of the

BDS [3] ansatz for gluon amplitudes has been anticipated by estimating the behaviour of

the string world surface for large p [2]. To fully establish the conjectured amplitude-string

correspondence one needs to solve the generalized Plateau problem for lightlike polygonal

boundaries. Since the related mathematical literature is mostly devoted to spaces with

positive definite metric, one is faced with a deep and delicate problem, and despite a lot of

effort [4–7] so far no real breakthrough has been achieved beyond p = 4.

The worldsheets constructed in [1] for p = 4 and generic kinematics of the gluon

momenta are all SO(2, 4) transforms of a highly symmetric configuration embedded in

an AdS3 ⊂ AdS5. For this AdS3 solution the worldsheet approaches a lightlike tetragon

winding alternating up and down around the conformal boundary of AdS3, the cylinder

R × S1, with each side just extending in a quarter of the cylinder. By construction the

surface is minimal. On top of this, by direct inspection, one finds that the surface is flat, too.

Given the high symmetry of this AdS3 solution it is naturally to ask, whether one could

find solutions in the subset of flat minimal surfaces also for e.g. AdS4 and a hexagon winding

in a maximal symmetric way around R × S2 or for AdS5 and an octagon winding around
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R × S3. Furthermore, the surface of ref. [1] is spacelike. Although we are not aware of a

rigorous proof that all solutions with lightlike closed polygonal boundaries winding around

the conformal boundary of AdS5 are spacelike, we expect this to be valid. For this reason, in

respect to the Alday-Maldacena conjecture, we concentrate on spacelike minimal surfaces.

But in parallel a look on timelike minimal surfaces is in order. They describe the

dynamics of strings in real time. As emphasized in ref. [4] the solution of ref. [1] can be

obtained from a rigid open string rotating in a plane (in its limit of infinite extension) by

Wick rotation of both the worldsheet time and some target space coordinates. There are

also dynamical rigid string solutions in AdS5 describing a string performing two indepen-

dent rotations in the (X1,X2) and the (X3,X4)-plane which are flat [8]. In this case a

Wick rotation of these solutions does not bring us back in an AdS5. But nevertheless, it

seems to be open, whether similar to the timelike case, there exist flat minimal surfaces

also in the spacelike case, beyond the known tetragon solution of ref. [1], which wind in

the full AdS5 and cannot be embedded in an AdS3 trivially extended to AdS5.

By classical theorems of differential geometry the embedding of surfaces in higher di-

mensional manifolds is controlled by the system of Gauß, Codazzi-Mainardi and Ricci equa-

tions. If these equations are fulfilled, the surface is fixed up to isometries in the embedding

space. An early discussion of strings in AdS4 along these lines has been given in ref. [9].

In the present paper we follow an equivalent procedure developed originally for the

reduction of the dynamics of the O(N) sigma model [10] and applied to the dynamics of

strings in de Sitter and anti de Sitter spaces in [4, 11, 12]. Our main focus will be on the

parallel treatment for both timelike (i.e. dynamical) and spacelike minimal surfaces and

the discussion of their characteristic differences. Based on this, we can prove that there

are no flat minimal spacelike surfaces in AdSn beyond those constructed in [1], and can

parameterize all flat timelike surfaces in AdS5 by two free chiral fields. We also comment

on the reduction for arbitrary dimensions AdSn.

2 The general framework for minimal surfaces in AdSn

Minimal surfaces with coordinates zµ = (σ, τ) embedded in a space parameterized by

coordinates Xk are solutions of the equation

gµν
(

∇µ∂νX
k(z) + ∂µXj∂νX l Γk

jl(X(z))
)

= 0 , (2.1)

with Γk
jl denoting the Christoffel symbols in the embedding space, gµν the induced metric

and ∇µ the induced two-dimensional covariant derivative. This guarantees the vanishing

of all mean curvatures, and it is also the stationarity condition for the two-dimensional

volume functional (Nambu-Goto action). Realizing AdSn as a hyperboloid in R
2,n−1

(Y 0(X))2 + (Y 0′)2 − (Y 1)2 − · · · − (Y n−1)2 = 1 (2.2)

and choosing conformal coordinates on the surface one gets from (2.1)

∂∂̄Y N (X(z)) − ∂Y K ∂̄YK Y N = 0 . (2.3)

– 2 –
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The choice of conformal coordinates gives the additional condition

∂Y N∂YN = ∂̄Y N ∂̄YN = 0 , (2.4)

where ∂, ∂̄ are defined by ∂ = ∂σ + ∂τ , ∂̄ = ∂σ − ∂τ for timelike surfaces and by

∂ = ∂σ − i∂τ , ∂̄ = ∂σ + i∂τ for spacelike surfaces.

One now extends the vectors Y, ∂Y, ∂̄Y to a basis of R
2,n−1 [4, 11]

{eN} = {Y, ∂Y, ∂̄Y,B4, . . . , Bn+1} . (2.5)

The orthonormal vectors Ba pointwise span the normal space of the surface inside AdSn.

By eq. (2.2) Y is timelike. For timelike surfaces a further timelike vector is parallel to

the surface, hence the normal space has to be positive definite. In contrast for spacelike

surfaces the second timelike vector has to be in the normal space. With (a, b = 4, . . . , n+1)

hab = δab or ηab, for timelike or spacelike surface, (2.6)

we require

(Ba, Bb) = hab , (Ba, Y ) = (Ba, ∂Y ) = (Ba, ∂̄Y ) = 0 . (2.7)

Moving the basis (2.5) along the surface one gets

∂ eN = A K
N eK , ∂̄ eN = Ā K

N eK . (2.8)

Now the strategy is to find a suitable parameterization of the dynamical (geometrical)

degrees of freedom in the entries of the matrices A, Ā and to derive differential equations for

the corresponding functions, using the equation of motion (minimal surface condition) (2.3)

and the integrability condition for eq. (2.8). Then, after solving these differential equations,

the surface has to be reconstructed by integration of (2.8).

Introducing

α(σ, τ) = log(∂Y, ∂̄Y ) (2.9)

ua(σ, τ) = (Ba, ∂∂Y ) , ūa(σ, τ) = (Ba, ∂̄∂̄Y ) ,

Aab = (∂Ba, Bb) , Āab = (∂̄Ba, Bb) , (2.10)

and using (2.3), (2.7) one can give eqs. (2.8) a more detailed form

∂Y = ∂Y

∂∂Y = ∂α∂Y +ubBb

∂∂̄Y = eαY

∂Ba = −eα ua∂̄Y +A b
a Bb ,

(2.11)

as well as the equations which one gets by the replacements ∂ ↔ ∂̄, ua → ūa, A b
a → Ā b

a .1

Indices on u, ū and A, Ā are raised and lowered with the normal space metric h, see eq. (2.6).

A and Ā with both indices downstairs are antisymmetric.

1Note that for timelike surfaces u and ū as well as A and Ā are real. On the other side, for spacelike

surfaces u and A are complex, and then the bar means complex conjugation.

– 3 –
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Then, the integrability condition ∂∂̄eN = ∂̄∂eN for eq. (2.8) gives

∂∂̄α − e−αubūb − eα = 0 , (2.12)

∂ūa − A b
a ūb = 0 , ∂̄ua − Ā b

a ub = 0 , (2.13)

e−α
(

ūau
b − uaū

b
)

= ∂Ā b
a − ∂̄A b

a + Ā c
a A b

c − A c
a Ā b

c . (2.14)

Here, a comment on the geometrical meaning of our quantities α, u, A is in order.

Since we are using conformal coordinates,

R = −2 e−α ∂∂̄α (2.15)

is the curvature scalar on our surface. u, ū parameterize the second fundamental forms

lcµν = (Bc, ∂µ∂νY ) with built in minimal surface condition lc µ
µ = 0. Writing for timelike

surfaces u = a + b and ū = a − b one gets

lc11 = lc22 =
1

2
ac , lc12 = lc21 =

1

2
bc , (2.16)

and for spacelike surfaces with u = a + ib, ū = a − ib

lc11 = −lc22 =
1

2
ac , lc12 = lc21 = −1

2
bc . (2.17)

The matrices A, Ā in (2.13), (2.14) describe the torsion of the surface (for AdSn, n ≥ 4).

Eqs. (2.12)–(2.14) are the Gauß, Codazzi-Mainardi and Ricci equations specialized to min-

imal surfaces in conformal coordinates. Eq. (2.12) can be related to the Gauß equation in

two ways. One version concerns the relation between the difference of the scalar curvature

of the surface and the constant curvature of AdS to the second fundamental forms (with

zero mean curvature) in the normal space in AdS only. The other version concerns the

embedding in R
2,n−1, now the big space is flat, and one has one more second form, whose

mean curvature is of course not zero.

The further analysis depends crucially on the signature of the induced metric on

the surface.

3 Timelike minimal surfaces in AdSn

In this case all quantities in (2.12)–(2.14) are real and the metric in the normal space is

positive definite, see (2.6). ∂ and ∂̄ are the derivatives with respect to the chiral coordinates

z = 1
2
(σ + τ), z̄ = 1

2
(σ − τ). Due to the antisymmetry of A and Ā one gets from eq. (2.13)

∂̄(uaua) = 0 , ∂(ūaūa) = 0 . (3.1)

Under a conformal transformation z 7→ ζ(z), z̄ 7→ ζ̄(z̄) the definitions (2.10) imply:

u 7→ (ζ ′)−2u, ū 7→ (ζ̄ ′)−2ū. This can be used to achieve within the conformal gauge

uaua = 1 = ūaūa . (3.2)

– 4 –
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There are exceptional cases, if either both or one out of uaua and ūaūa are zero. If both

are zero, due to the positive definiteness, u and ū are zero, which implies the vanishing

of all second fundamental forms (with respect to AdSn). The surface is then (part of) an

AdS2 ⊂ AdSn. The exceptional case uaua = 1 and ūaūa = 0 will be postponed to the end

of this section.

For a given surface, the choice of the normal vectors Ba in (2.7) is fixed only up to a

(z, z̄)-dependent SO(n − 2) transformation, which effects u, ū and A, Ā as

ua 7→ Ω b
a ub , ūa 7→ Ω b

a ūb ,

A b
a 7→

(

ΩAΩ−1 + ∂Ω Ω−1
) b

a
, Ā b

a 7→
(

ΩĀΩ−1 + ∂̄Ω Ω−1
) b

a
. (3.3)

We now want to use this gauge freedom to simplify eqs. (2.12)–(2.14). Starting with

light cone gauge Ā = 0, we get from (2.13) ∂̄u = 0. Then, with a gauge transformation

depending only on z, we can bring ua to the form ua = δa,n+1. There is no possibility to

simplify ū, beyond making use of (3.2), and we continue with

ua = (0, 0, . . . , 1) , ūa = (χ4, χ5, . . . , χn,±
√

1 − χ · χ ) . (3.4)

Inserting all this into eq. (2.14), we see that the field strength on the r.h.s. no longer

contains the commutator term and is given by −∂̄A. Furthermore, due to the structure of

the l.h.s. and the special form of u, ū all its matrix elements are zero, except those in the

last row and column. Then in addition, with a z dependent gauge transformation, acting

only in the space orthogonal to Bn+1, we can also achieve zeros for all matrix elements of

A, except those in the last row or column2

A b
a =



















0 · · · 0 λ4

0 · · · 0 λ5

·
·

0 · · · 0 λn

−λ4 · · · −λn 0



















, Ā b
a = 0 . (3.5)

Inserting this parameterization into (2.13) and (2.14) one finds

λa = ± ∂χa√
1 − χ · χ , ∂̄λa = −e−αχa . (3.6)

After this complete gauge fixing we arrive at a nonlinear coupled system of second order

differential equations for the (n − 2) functions α, χ4, . . . , χn

∂∂̄α ∓
√

1 − χ · χ e−α − eα = 0 , (3.7)

∂∂̄χb ±
√

1 − χ · χ e−α χb +
χ · ∂̄χ

1 − χ · χ ∂χb = 0 . (3.8)

These equations have a similar structure to those derived for the O(N) sigma model in [13].

2At this point our analysis is restricted to simple connected patches. On the global level putting these

A elements to zero could be obstructed by nonzero holonomies along some cycles.
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For AdS3 there are no χa, and one ends with one equation for α: ∂∂̄α − 2 cosh α = 0

or ∂∂̄α − 2 sinh α = 0, depending on whether the signs of u4 and ū4 are equal or opposite.

In refs. [4, 11] only the sinh version is discussed.

For AdS4 besides α, there is only χ4. With the parameterization ±
√

1 − χ2
4 = cos β

one gets [11]

∂∂̄α − e−α cos β − eα = 0

∂∂̄β + e−α sin β = 0 . (3.9)

We still have to comment the one exceptional case uaua = 1, ūaūa = 0, postponed

above. Repeating the arguments of the generic case, but with all ūa = 0, one further gets

∂∂̄α−eα = 0, ua = δa,n+1 and all A b
a , Ā b

a zero. This gives a constant curvature surface

isometric to AdS2. But since one of the second fundamental forms is not identically zero,

the embedding in AdSn, n > 2 is not totally geodesic.

4 Spacelike minimal surfaces in AdS5

Now ∂ and ∂̄ are the derivatives with respect to the surface complex coordinates z =
1
2
(σ + iτ), z̄ = 1

2
(σ − iτ) and the bar on uc and A c

b implies complex conjugation, too.

Eq. (3.1) holds as in the timelike case, and by a conformal (holomorphic) transformation

z 7→ ζ(z), z̄ 7→ ζ(z) one can achieve eq. (3.2) (the exceptional case uaua = 0 we discuss

later). With uc = ac + ibc this means

ac ac − bc bc = 1 , ac bc = 0 . (4.1)

The sign of ac ac and bc bc is indefinite. However, in a space with just one timelike

direction, see (2.6), the second equation in (4.1) forbids that both of these terms are

negative. Therefore we end up with three cases: bc bc > 0; −1 ≤ bc bc < 0; bc bc = 0 .

Unfortunately, we did not find yet a simple completely gauge fixed formulation similar

to the previous section for generic AdSn. For this reason we now consider AdS5, which

after all is our main focus.

Making use of the gauge freedom (3.3), but now with Ω ∈ O(1, 2), one can give uc the

following form (taking B4 as the timelike vector in the normal space and β real)

spacelike I (bc bc > 0) , uc =

(

0, i sinh
β

2
, cosh

β

2

)

(4.2)

spacelike II (−1 ≤ bc bc < 0) , uc =

(

i sin
β

2
, cos

β

2
, 0

)

(4.3)

spacelike III (bc bc = 0) , uc = (1 + iβ, 1 + iβ, 1) . (4.4)

We now discuss case spacelike I in some detail. As input in the Gauß equation (2.12)

one gets ucūc = cosh β. Inserting the u-parameterization (4.2) into (2.13) one finds

A 6
5 = − i

2
∂β and the condition iA 5

4 sinh β
2

= A 6
4 cosh β

2
, which leads to the parame-

terization A 5
4 = ρ cosh β

2
, A 6

4 = iρ sinh β
2
. Eq. (2.14) then gives three more differential

equations for β, ρ, ρ̄, and altogether we end up with

– 6 –
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case spacelike I (uc from (4.2)):

A 6
5 = − i

2
∂β , A 5

4 = ρ cosh
β

2
, A 6

4 = iρ sinh
β

2
. (4.5)

∂∂̄α − e−α cosh β − eα = 0 , (4.6)

∂∂̄β + (e−α + ρρ̄) sinhβ = 0 , (4.7)

(ρ̄∂β − ρ∂̄β) sinh
β

2
+ (∂ρ̄ − ∂̄ρ) cosh

β

2
= 0 , (4.8)

(ρ̄∂β + ρ∂̄β) cosh
β

2
+ (∂ρ̄ + ∂̄ρ) sinh

β

2
= 0 . (4.9)

Similarly one gets for case spacelike II (uc from (4.3)):

A 5
4 =

i

2
∂β , A 6

4 = ρ cos
β

2
, A 6

5 = iρ sin
β

2
. (4.10)

∂∂̄α − e−α cos β − eα = 0 , (4.11)

∂∂̄β + (e−α + ρρ̄) sinβ = 0 , (4.12)

(ρ̄∂β − ρ∂̄β) sin
β

2
− (∂ρ̄ − ∂̄ρ) cos

β

2
= 0 , (4.13)

(ρ̄∂β + ρ∂̄β) cos
β

2
+ (∂ρ̄ + ∂̄ρ) sin

β

2
= 0 . (4.14)

Note that the differential equations for case II are related to those of case I by β 7→ iβ.

To be complete, we also give

case spacelike III (uc from (4.4)):

A 5
4 = ρ , A 6

4 = −A 6
5 = i∂β − ρ(1 − iβ) , (4.15)

∂∂̄α − 2 cosh α = 0 , (4.16)

∂∂̄β + (e−α + ρρ̄)β + (ρ̄∂β + ρ∂̄β) + (∂ρ̄ + ∂̄ρ)
β

2
= 0 , (4.17)

∂ρ̄ − ∂̄ρ = 0 . (4.18)

Let us add some comments. In the formulation, given in the previous section for

timelike surfaces in AdS5, we needed three real valued functions α, χ4, χ5, obeying a

system of second order differential equations. Here we have real α, β and one complex ρ,

but since the differential equations for ρ, ρ̄ are of first order only, the overall counting of

degrees of freedom matches.

There is of course also a description of timelike minimal surfaces in AdS5, in parallel

to the treatment of this section. The resulting differential equations coincide with those

for case spacelike II up to one difference: in eqs. (4.13), (4.14) ρ has to be replaced by −ρ.

But the crucial point is that per se ρρ̄ can have both signs, while it is positive semidefinite

for spacelike surfaces. This will have far reaching consequences for the existence of flat

minimal surfaces, as will be discussed in the next sections.

For AdS3 there is only one u, namely u4 and no ρ. Then eq. (4.1) means −a4a4+b4b4 =

1 and a4b4 = 0. This necessarily implies a4 = 0 and b4 = ±1, hence u4ū
4 = −1, and one

is left with the sinh-Gordon equation for α. In contrast to the timelike case, here the cosh

variant is excluded.

– 7 –
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In AdS4 there is not enough freedom to realize cases spacelike I or spacelike III, one

also has not to introduce ρ. The equations for α and β then have the same form (3.9) as

in the timelike case.

We close with the discussion of the postponed exceptional case uaua = 0. Instead

of (4.1) one has ac ac − bc bc = 0, ac bc = 0, implying bcbc ≥ 0. To avoid a treatment in all

details, let us concentrate on the issues relevant for the search for flat surfaces in the next

section. The case bcbc = 0 gives uaūa = 0 and via (2.12) and (2.15) a spacelike surface of

constant negative scalar curvature, i.e. H
2. The case bcbc > 0 allows a parameterization

uaūa = eβ . This leads to the absence of flat solutions of (2.12) within the exceptional cases.

5 Flat spacelike minimal surfaces

On a flat surface one can always choose coordinates in which the induced metric is ηµν or

δµν , respectively. However, we have already completely used up the freedom of coordinate

transformations by first starting with conformal coordinates and then using the remaining

conformal transformations to get (3.2). Therefore, for flat surfaces we have to allow also

non constant α with ∂∂̄α = 0, see eq. (2.15).

Let us start with AdS3. Then from the sinh-Gordon equation one necessarily gets

α = 0. The matrices A K
N and Ā K

N that have to be used in the surface reconstruction

equation (2.8) are (the timelike case has been discussed in [4], where all entries were real)

A K
N =











0 1 0 0

0 0 0 −i

1 0 0 0

0 0 −i 0











, Ā K
N =











0 0 1 0

1 0 0 0

0 0 0 i

0 i 0 0











. (5.1)

Above we had as an alternative u4 = ±i, we take here u4 = i. The other choice can be

generated by B4 7→ −B4 or τ 7→ −τ and describes a surface related by a sign reversal of

one of the embedding coordinates in R
2,2.

The solution of (2.8) is now

eN (σ, τ) = M K
N eK(0, 0) , M K

N =

(

exp

(

σ + iτ

2
A

)

exp

(

σ − iτ

2
Ā

)) K

N

. (5.2)

The explicit exponentiation yields

M K
N =











CσCτ i Ūσ,τ −i Uσ,τ SσSτ

−i Uσ,τ CσCτ −i SσSτ Ūσ,τ

i Ūσ,τ i SσSτ CσCτ Uσ,τ

SσSτ Uσ,τ Ūσ,τ CσCτ











, (5.3)

with

Cσ = cosh
σ√
2

, Sσ = sinh
σ√
2

, Uσ,τ =
1 + i

2
√

2

(

sinh
σ + τ√

2
+ i sinh

σ − τ√
2

)

. (5.4)

Eq. (5.2) fully describes the evolution of our adapted frame {eN} along the surface in terms

of an initial choice at some starting point. The freedom in this initial choice is related to

– 8 –
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isometry transformations of the surface as a whole. Since Y (σ, τ) is our first vector in the

frame, we can read off the coordinates of the surface vector with respect to the R
2,n−1

basis {eN (0, 0)} from the first row of the matrix M. There is however still one subtlety,

due to the fact that the second and third vector of our frame are not normalized and not

orthogonal to each other.3 Orthonormal combinations of ∂Y and ∂̄Y are 1√
2
e−α/2(∂Y +∂̄Y )

and −i√
2
e−α/2(∂Y − ∂̄Y ) (in these combinations a sign ambiguity, again related to a sign

reversal of an embedding coordinate has been fixed). Therefore, to get the coordinates of

Y with respect to an orthonormal basis in R
2,n−1, one has to take 1/

√
2 times the sum

and −i/
√

2 times the difference of the second and third entry of the first row of M. A last

point to remember is that the two timelike vectors in our frame sit at position 1 and 4.

Taking all this into account we get

Y 0 = cosh
σ√
2

cosh
τ√
2

, Y 0′ = sinh
σ√
2

sinh
τ√
2

,

Y 1 = sinh
σ√
2

cosh
τ√
2

, Y 2 = cosh
σ√
2

sinh
τ√
2

. (5.5)

which is the solution used in [1, 2] for the four-point amplitude.

We now turn to the search for flat spacelike minimal surfaces in AdS5. Then from (4.6)

and (4.16) we conclude that there is no such surface of type spacelike I or spacelike III. In

case spacelike II, due to (4.11), flatness implies cos β = −e2α. As long as sin β 6= 0 this

gives after differentiation

∂∂̄β =
4e2α

sin β

(

1 − cos β e2α

sin2 β

)

∂α∂̄α . (5.6)

Inserting it into (4.12) one arrives at the condition

4e2α ∂α∂̄α +
(

e−α + ρρ̄
)(

1 − e4α
)2

= 0 , (5.7)

which, due to ρρ̄ ≥ 0, cannot be fulfilled.4

Therefore, the only remaining possibility is sin β = 0, i.e. cos β = −1 (the option

cos β = 1 is excluded by (4.11)). For ρ, ρ̄ eqs. (4.13), (4.14) degenerate to ∂ρ̄ + ∂̄ρ = 0.

The matrices A K
N and Ā K

N for eq. (2.8) are then

A K
N =



















0 1 0 0 0 0

0 0 0 −i 0 0

1 0 0 0 0 0

0 0 −i 0 0 0

0 0 0 0 0 iρ

0 0 0 0 −iρ 0



















, Ā K
N =



















0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 i 0 0

0 i 0 0 0 0

0 0 0 0 0 −iρ̄

0 0 0 0 iρ̄ 0



















. (5.8)

Both matrices are block diagonal. This property will be conserved under exponentiation.

As a consequence, the new degrees of freedom relative to the AdS3 case, encoded in the

3For a fully orthonormal choice of the eN the matrix M would be ∈ SO(2, n − 1).
4As mentioned already, for timelike surfaces ρρ̄ can have both signs, thus allowing more options.
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lower right blocks with ρ and ρ̄, do not influence the first row of the six-dimensional ana-

log of (5.3).

One can make an even stronger statement on ρ and ρ̄. Via a gauge transformation (3.3),

acting only in the space spanned by B5 and B6, one can achieve ρ = ρ̄ = 0. This can be

seen in two ways. Firstly, with ∂ρ̄+ ∂̄ρ = 0 one finds zero field strength components related

to the lower right corner of (5.8). Secondly going back to (4.3) one finds that, as soon as

either sin β
2

or cos β
2

are zero, u and ū are parallel. We are just interested in cos β = −1 i.e.

cos β
2

= 0. Then eq. (2.14) leads to the vanishing of all components of the field strength

tensor already from the very beginning.

Altogether this proves that all flat spacelike minimal surfaces in AdS5 are realized in

a subspace AdS3, trivially extended into AdS5, and are of type (5.5).

This statement can be extended in a straightforward manner to AdSn, n > 5. Let

us sketch the set of equations one gets instead of (4.5) - (4.18). The Gauß equa-

tions (4.6), (4.11) and (4.16) remain unchanged, which again excludes flat minimal surfaces

of type spacelike I and III. For the remaining case spacelike II, eq. (4.10) is generalized to

A 5
4 = i

2
∂β, A b

4 = ρb cos β
2
, A b

5 = iρb sin β
2
, b = 6, . . . , n + 1. There arise no constraints

on A b
a if both a, b ≥ 6. In eq. (4.12) one has to make the replacement ρρ̄ 7→ ∑n+1

b=6 ρbρ̄b

and in (4.13), (4.14) ∂ρ̄ 7→ ∂ρ̄a − A b
a ρ̄b. Then the flatness condition necessarily leeds to

cos β = −1 and a block diagonal structure for A K
N , Ā K

N with the (4 × 4) upper left block

of AdS3 structure and a (n − 3) × (n − 3) lower right block.

6 Flat timelike minimal surfaces

The flatness condition implies ∂̄∂α = 0, as above. Together with the sinh-Gordon equation

∂̄∂α − 2 sinh α = 0 in AdS3, this allows only the vanishing solution α = 0, which leads to

the rigid infinite rotating string of [4].

In AdS4 one has two equations (3.9). One solution is α = 0, cos β = −1. It obviously

corresponds to the AdS3 case extended to AdS4 trivially. For α 6= 0, similarly to the

spacelike case, one finds

(1 − e4α)2 = −4e3α∂α ∂̄α . (6.1)

Since for flat surfaces α has a chiral decomposition α = φ(z) + φ̄(z̄), the r.h.s of eq. (6.1)

is given as a product of chiral and antichiral fields. Calculating ∂∂̄ of the logarithm, the

r.h.s. is always zero, while the l.h.s. vanishes only for constant φ or φ̄. Altogether (6.1) has

no solution rather than α = 0.

But starting from AdS5 one can find more flat solutions. An explicit example is the

double spin solution of ref. [8]. We follow the scheme of the previous section. The timelike

analogs of eqs. (4.11)–(4.12), as mentioned above, are the same. The equation similar

to (5.7) provides

ρ ρ̄ = −4e2α ∂α ∂̄α

(1 − e4α)2
− e−α . (6.2)
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Instead of (4.13)–(4.14) one gets

(ρ̄∂β + ρ∂̄β) sin
β

2
− (∂ρ̄ + ∂̄ρ) cos

β

2
= 0 , (6.3)

(ρ̄∂β − ρ∂̄β) cos
β

2
+ (∂ρ̄ − ∂̄ρ) sin

β

2
= 0 . (6.4)

The crucial point is that ρρ̄ can have both signs, while it is positive semidefinite for space-

like surfaces.

Nontrivial flat solutions imply cos β 6= ±1, i.e. cos β
2
6= 0 and sin β

2
6= 0, that allow to

simplify (6.3)–(6.4) in the form

sinβ ∂ρ̄ + ρ̄ cos β ∂β = ρ∂̄β , sin β ∂̄ρ + ρ cos β ∂̄β = ρ̄ ∂β . (6.5)

Due to cos β = −e2α, eqs. (6.2) and (6.5) yield

∂ρ = Aρ + B ρ3 , ∂̄ρ = C ρ +
D

ρ
, (6.6)

where the functions A, B, C and D are expressed through φ(z), φ̄(z̄). Then the consistency

condition for (6.6) provides an algebraic (quadratic in ρ2) equation for ρ. Thus, the chiral

and anti-chiral free fields φ(z) and φ̄(z̄) (α = φ + φ̄) parameterize all flat timelike minimal

surfaces in AdS5.

7 Characterization by invariants of minimal surfaces in AdSn, n ≥ 4

While the distinction between timelike and spacelike surfaces has a clear geometrical and

physical meaning, the various cases in section 4 appeared on a rather technical level using

conformal coordinates. To find a characterization, which is both diffeomorphism invariant

as well as invariant with respect to local isometry transformations in the normal space, we

start with defining as F = Fzz̄ the field strength related to A = Az and Ā = Az̄, i.e. the

r.h.s of eq. (2.14). Next we introduce for n ≥ 4 the invariant torsion quantity

T =
1

8 |det g| ǫαβ ǫµν tr(FαβFµν) . (7.1)

Evaluating in conformal coordinates and using eq. (2.14), T becomes

T =
1

2
e−2α tr F 2 = e−4α

(

(ūau
a)2 − (ūaū

a)(ubu
b)

)

. (7.2)

Due to (2.6) one has T ≤ 0 for timelike surfaces, while T can have both signs for spacelike

surfaces. Furthermore, for timelike surfaces T = 0 ⇒ ∀F b
a = 0. In contrast, in the

spacelike case such a conclusion cannot be drawn.

Resolving with respect to ūau
a, putting into the Gauß equation (2.12) and using (2.15),

we get with C = (ūaū
a)(ubu

b)

R + 2 ± 2 e−2α
√

C + e4α T = 0 . (7.3)
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Exceptional cases. All exceptional cases, discussed in the previous sections, can be

summarized by C = 0. Then from (7.2) T ≥ 0. For timelike surfaces this necessarily

means T = 0, hence R + 2 = 0. The surface is then an AdS2 ⊂ AdSn. For the spacelike

case the option T = 0 gives a surface isometrically to H
2, and for T > 0 one can even fix

the sign ambiguity coming from (7.3) and gets R + 2 + 2 T 1/2 = 0.

Non-exceptional cases. Here the choice of coordinates on the surface can be fixed

completely such that C = 1. Contrary to the exceptional cases, α no longer drops out

of (7.3), and one can express α in terms of invariant quantities

e−4α =
(R + 2)2

4
− T . (7.4)

Altogether, now a nice picture emerges. First of all, as a spin off, we have proven that

for all minimal surfaces in AdSn, n ≥ 4

(R + 2)2

4
− T ≥ 0 . (7.5)

This inequality is saturated by the exceptional cases.

For non-exceptional timelike minimal surfaces one has (R + 2)2 − 4T > 0, which due

to T ≤ 0 induces no further subdivision.

For non-exceptional spacelike minimal surfaces one gets

case I : 0 ≤ T <
(R + 2)2

4
,

case II : T ≤ 0 ,

case III : T = 0 , not all F b
a = 0 . (7.6)

Note that if T = 0 in case I or II it results in F b
a = 0, as in the timelike case.

8 Conclusions

Along the lines of refs. [4, 11] we have analyzed both timelike and spacelike minimal surfaces

in AdSn. We went beyond these works in two aspects. One concerns the derivation of the

differential equations for the reduced system for n ≥ 5 and the other concerns the parallel

treatment of both timelike and spacelike surfaces. In this analysis we pointed out crucial

differences in the respective equations. For spacelike minimal surfaces in AdSn, n ≥ 5 one

finds three types of surfaces which differ among themselves in the form of their reduced

equations, too.

Based on our analysis, we proved that there are no flat spacelike minimal surfaces in

AdSn, beyond those embedded in an AdS3 ⊂ AdSn (where AdS3 is totally geodesic in

AdSn) and used for the tetragon case of the Alday-Maldacena conjecture. Furthermore, a

parameterization of all flat timelike surfaces in AdS5 by two free chiral fields has been done.

The considerations are performed in a certain patch of the surface. But since the result-

ing differential equations yield the globally well defined four cusp solution, the statement

can be made concerning surfaces as a whole.
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We stressed that there exist flat timelike minimal surfaces in AdS5, which cannot be

embedded in an AdS3 subspace [8]. The fact that their double Wick rotation does not yield

a spacelike surface in AdS5 is no accident and finds its deeper explanation in the theorem

just stated.

The subdivision for the description of spacelike minimal surfaces, first introduced in the

discussion based on conformal coordinates, finds a characterization in terms of the scalar

curvature R and a quadratic torsion invariant T . We also derived a universal inequality

involving R, T .

There remain a lot of open problems. First of all no progress towards minimal surfaces

with higher polygonal boundaries has been achieved.

In the application to the dynamics of open or closed strings the issue of boundary

conditions inside AdS becomes relevant and restricts to some extent the allowed conformal

transformations on the surface as a whole.

In addition, our analysis generated various other questions already before it comes to

the issue of boundary conditions. The reduction of the system for generic AdSn unfolds

interesting structures relevant to the most convenient choice of parameterizing functions

and gauge fixing. One can also apply a gauge invariant description using group valued fields

instead of connections (A, Ā). This approach relates the AdS string dynamics to gauged

WZW models [14], similarly to the AdS×S case [12]. Work in this direction is in progress.
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